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The flaws in the “Reply” [1] to our paper [2] have been pointed out. Elber and Karplus
(EK) have not disproved our irrefutable global statement that the energy average cannot be
minimized which rebuts the theoretical background of EK-type calculations. Another state-
ment of ours has shown that even a curve for which the average energy is locally minimal for
all directional perturbations in the sense of classical variational calculus cannot be identical
with the reaction path (RP) defined as a steepest descent path (SDP). EK found an error in
the early preprint of our theoretical paper [3] and because of this error they qualified our cor-
rect variational statement as false for all the SDPs consisting of a straight line each. Mixing
global and variational arguments, EK refuted our criticism in a logically incorrect manner. In
this Comment we prove that both of our earlier statements invariably remain in force and the
criticism included in those has been as well-established and solid as was before.
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1. Introduction

Based on both theoretical considerations and numerical experiences, we published
a paper [2] which pointed out serious conceptual errors in the popular Elber–Karplus
(EK) algorithm [5] and in its sequels of path-following procedures [6–9]. In a polemic
paper [1] the authors replied to our arguments, insisting on the validity of their strategy.
However, as we are going to point out in this “Comment”, EK do not touch the main
issue at all. They absolutely disregard our statement asserting [2,3] that the average
functional

A =
∫ P
R
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has no globally minimizing curve unless the two minima belonging to reactants and
products are joined by a curve with constant energy values (what is a chemically irrele-
vant and absurd case). Instead, EK exhibits a computational error in the Euler–Lagrange
equation in an early preprint of the theoretical paper [3] cited in [2] in which the min-
imum principle of the EK method has been examined from a variational point of view.
The paper [3] has been corrected before publication, with the conclusion that a reaction
path (RP in the usual Fukui sense) is no local minimum of the energy average functional
on some straight line containing it in the space of the curves joining the configurations
of reactants and products. Knowing the correct form of the Euler–Lagrange equation,
EK have not proceeded toward the (easy) modification of our later considerations in the
preprint of [3] leading to the above mentioned negative outcome for the valuation of
their method. Moreover, EK have insisted [1] that minimization of the energy average
functional leads to some curve which perhaps is no Fukui-type RP, however, it passes
near the Fukui-type RP if this latter has small curvature. To illustrate their ideas, they
take the function

U(x, y) = kx2+ y4 − y2 (2)

as a counter-example to our arguments. They even suggested that the SDP and the
approximate RP defined as the energy average minimizing curve should be regarded
same in this case. At this stage we recall the incontrovertible mathematical fact [2]
that none of the curves joining one local minimum to another can minimize the energy
average functional. However, a discretized version of any EK-type method with Powell
minimization, without doubt, produces easily the straight line segment RP of the function
U when using a fixed number of points for curve representations. In order to clarify the
situation, we are to examine the case of this model function in detail. By precise MAPLE
calculations [10] we prove the existence of arbitrarily small admissible modifications of
the RP ofU with smaller energy average than that of the RP. With this observation we
mean that the minimization algorithms implemented by EK do not work properly. We
point out the reason: discretized approximate line integrals along with finite dimensional
minimization procedures (like the Powell algorithm) with a fixed number of points are
unreliable tools in minimization of functionals of line integrals. This is a serious warning
for designers of numerical algorithms based on variational principles.

For their defense, EK quote another variational principle due to Olender–Elber
(OE) [8] stating that RPs minimize the line integral of the gradient norm. We show
by a counter-example that, unfortunately, this claim is also false in general. The original
sketched proof [8] is completely wrong. However, this latter principle works under some
mathematically heavy but chemically not irrealistic conditions if the number of critical
points on the potential energy surface is small, but for completely different reasons [11]
as are the arguments in [8].

Clearing up the main theoretical reasons for the numerical misgivings of EK-type
methods, we designed numerical experiments to establish that coincidences of paths
with the RP as the results of such algorithms are incidental. In the meantime we have
published such results [4,12].
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2. Discussion

We have already proved [2–4,12,13] that the average (1) of the line integral of the
energy function serving as a base for the EK method and its sequels has no minimum.
In our proof we have presented a procedure by which to any curveL we can construct
another curveL′ with the same starting and endpoints for which the average of the
line integral is strictly smaller than that forL unless the energy function assumes its
minimum at every point ofL. EK did not even try to disprove this our main statement
because it was irrefutable and indisputably faultless. Occasional numerical errors in
the calculations of our given examples may occur because of the lack of the original
authentic algorithms and the use of a general version of the Powell method [14] which
does not require the knowledge of the analytic derivative of the function to be minimized.
However, it should now be stressed: the gravest insufficiency of the EK method is that
based on the minimum of the line integral averagewhich really does not exist. Our other
objection against the strategy of the EK-type methods is that – though the minimum for
the discretized form of the line integral does exist – the concrete calculations based on
the discretized line integral are still strongly parameter dependent. EK argue that the
penalties that avoid rigid body translations and rotations do not influence the value of
the functional and the equidistant constraint does not affect significantly the shape of the
RP. Nevertheless, using fixed numbers of points (as they do) this statement is not true
as we have already shown by examples [2,4,12,13]. Therefore, the hollow pretext by
EK, simply saying that they do not use rigid body constraint in the Müller–Brown curve
calculations since it is unnecessary in that case, cannot be accidental. Their true reason
for not using the penalty function to avoid rigid body movements is that they would get
much worse results if they employed the choice ofλ = λ′ = 4000, 8000 or 16000 as
they had done in former examples.

Another – even more general – statement has been taken in [3] where we have
shown that by using variational analysis (i.e., weaker constraints) even local minima of
the line integral average can not be regarded as a steepest descent path (SDP). There we
have also acknowledged EK for reminding us to a calculational error. However, after cor-
recting this error our statements [2] are invariably valid. In their “Reply” [1] EK hoped
to find a counter-example by constructing the 2D potential energy surface of the energy
function (2). They argue that they-axis joining the two minima is an SDP(x = 0) and
this is also the minimum of the line integral average. Out of this is only true that the
y-axis is a SDP and may also be true that the curve calculated by the EK procedure is
coinciding with it. Nevertheless we can easily demonstrate that line integral averages
smaller than those calculated for curves running along they-axis do really exist.

By using MAPLE V calculations [10](k = 1) with the control sequence
a:=sqrt(1/2); assume(t>0); assume(u>=-Pi/2,u<=Pi/2);
C:=s+t*sqrt(aˆ2-sˆ2); Cu:=simplify(subs(s=a*sin(u),C));
ut:=solve(diff(Cu,u)=0,u);
Lt:=int(diff(Cu,u),u=-Pi/2..ut)-int(diff(Cu,u),u=ut..Pi/2);
U:=k*xˆ2+yˆ4-yˆ2; Fu:=subs(x=0,y=Cu,U)*diff(Cu,u);
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It:=int(Fu,u=-Pi/2..ut)-int(Fu,u=ut,.Pi/2); At:=It/Lt;
DDA0:=limit(diff(At,t,t),t=0,right);
we prove that the curvesCt (t � 0) with the coordinate components

(Ct)x = t
√
a2− s2, (Ct)y = s + t

√
a2− s2 (3)

(herea = 1/
√

2 and−a � s � a) at any sufficiently small positivet parameter values
give smaller line integral average value than the SDP curve (x = 0). Using a simpler
assignment

Ct : [−a, a] � s →
(
0, s + t

√
a2 − s2

)
(4)

for arc-length proportionally parameterized curves MAPLE calculations [10] give the
second derivative

d2

dt2
A(Ct)

∣∣∣∣
t=0+
= − 2

15
< 0, (5)

whose negative value shows that the SDP is not a local minimum of the set of curves.
Consequently,A(Ct) < A(C0) if 0 < t < t0 for somet0 > 0 value and thus the
functionalA is not a local minimum in the sense of variational calculus. The inequality
A(Ct) < A(C0) can especially easy be verified fort = 0.01, 0.02 and 0.03.

Without doubt, several numerical EK type algorithms find the proper RP (the
curveC0) in this case. However, this fact is not, least, a good message for the users of
such programs. Namely, if their minimization works properly, they should have found
curves better than the RP arbitrarily close to it. The explanation of this paradox is as
follows. If we use a fixed number, e.g.n, of nearly equidistant points to represent curves
and if we apply numerical approximation with a given order in terms of the points of
representation for line integrals, then the parts of the curvesCt outside the segmentC0

do not contain any points of their representation for small values of the parametert such
that length(Ct) − length(C0) < a/n = 1/n

√
2. Thus the small, nevertheless – for the

integral average crucial – partCt \ C0 (i.e., the piece of the segmentCt outsideC0) of
the curveCt has no influence at all to the numerical calculation of the energy average
along the curveCt for sufficiently small values oft . This consideration can be modified
in a straightforward manner to the case of any curveC∗0 joining the global minimum
with strictly positive definite Hessian of an energy function with another local minimum
with higher energy value. Therefore, in general,discretized numerical integration with
a fixed number of points along the curves in such calculations cannot be combined with
finite dimensional minimization algorithms (e.g., Powell’s minimization) to determine
minimizing curves of functionals of line integrals.

We do not deny, of course, the existence of the line integral or its average (EK
give the matter the appearance as if we would do) but we do not accept the existence
of the minimum of the line integral average. Parts of our paper cited carelessly or in
an intentionally wrong way can be suited to mislead the reader uninformed in the given
topic. EK state that “other algorithms developed by Elber and coworkers for determining
RPs for larger systems, such as that of Ulitsky and Elber (UE) [9] and of OE [8] compute
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the exact SDP”. The proof of this statement given in [8] is false. OE disregard that by
varying the curve its length will also be changed. Assuming two minima and one saddle
point (SP) and accepting some chemically not irreal conditions, an absolutely correct
proof [11] entirely different from that described in [8] can be given. To verify this
we give a simple 2D artificial counterexample the RP of which determined by the OE
method [8] is, definitely, not a SDP. Let us take the function

U = (1− r2
)8− r14

(
2− r2

)7
cos 6ϕ, (6)

wherer andϕ are polar coordinates. Fukui’s RPs are the segments of the unit circle with
its centre in the origin and those radii of the circle which join the centre of the circle with
the local minima defined by the relation

Pk = (coskπ/m, sinkπ/m), k = 0, . . . ,2m− 1. (7)

Denote the curve between the points(−1,0) and(1,0) by Ct which is composed from
the semicircle lying on the upper semiplane and having a radiust and its center in the
origin, and from two straight line segments of the section of length 1− t . LetG(C) be
the functional defined by equation (26) in [8]:

G(C) =
∫
C

‖∇U‖d�. (8)

Direct MAPLE calculations [10] show that

G(C1/2) < G(C0), G(C1/2) < G(C1). (9)

AsG is not minimized byC0 andC1 therefore from these two inequalities follows that
the curve which joins the points(0,1) = P0 and(0,−1) = P3 and minimizeG cannot
be a SDP. This our counter-example verifies that the proof given in OE [8] is incorrect.
Nevertheless, though the curves minimizingG can be used as an optional definition for
a new RP concept they cannot be used as a new determination method of SDPs. In
the meantime we gained negative experiences by using the authentic Czerminski–Elber
(CzE) [6] algorithm implemented in the program package TINKER [7]. These results
were presented at the WATOC’99 congress [4,12].

3. Conclusions

1. EK have never mentioned in their papers that the minimum of the average of the
line integral does not exist, therefore it is unfair that they suppress this fact which we
have proved by exact mathematical arguments. In the same time all the RP-following al-
gorithms operating by the EK strategy have been based on the existence of the minimum
of the energy functional average.

2. We have also proved that it is not correct to use a new concept introduced by
EK which defines the RP as the minimization curve of the energy functional average.
We reject the way by which EK are attacking our strictly mathematical proof and its
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results without exact mathematical contra-argumentation. The “Reply” mostly contains
mathematically unproven statements, therefore the reader who reads this and our paper
in succession will not be able to judge the two works objectively with equal measures
and to make distinction between the qualities and truth-contents of the two papers. We
are also arguing against the statement according to which the piling up of the points at
the end positions is well known from the literature and therefore, in the first part of our
proof there is no novelty. EK and other authors using the EK strategy have never in-
vestigatedthe reasonfor this congestion of points. Had they investigated it, they should
have come to realize that this congestion is nothing else but justthe consequence of the
non-existence of the energy average minimum. Thus, those who have been using the EK
strategy automatically and without critics have always been rejoicing whenever they get
sections of curves between the congestional places of clustered points corresponding,
approximately, to some experimental data while just this congestion should have raised
suspicions and doubts against the method in the authors using the EK strategy. Another
question – based on experiences of computer experiments with the EK-type algorithms
– raised by us from the beginning: whether the accidental agreements between curve
sections joining the congestion places and the experimental data can or cannot be as-
cribed to the side-effects inherent in the algorithms or in the numerical realizations of
the methods applied (cf. the RP calculations on the Müller–Brown potential in [1,2]). To
our opinion, EK (and followers) should have only stated fairly that by using their algo-
rithms or numerical methods they obtained numerous different chemically relevant and
explainable results in some cases and with given constraints (parameters and/or penalty
functions). Such an “experimental” method – even without adequate mathematical foun-
dation – could be acceptable, especially when applied to very large chemical systems.
It is, nevertheless, absolutely unacceptable if someone tries to justify such an “experi-
mental” method by a deficient concept and faulty mathematical argumentations. This
way would then be a pseudo-scientific and not a true scientific approach to the real prob-
lem and, therefore, must not be accepted in exact natural sciences. It is important to
call attention to the potentially dangerous tendency by promising a possibility to theo-
retically unqualified users to apply an algorithm and/or numerical method automatically
and therefore without critics for characterizing large organic and biological systems,
which, instead of using a theoretically well-established concept, is only pretended to
give a correct definition of the RP.

3. Another statement of EK, without proof again, that the calculation results pro-
vided by their numeric method (and those by other methods based on the EK strategy)
are independent of the parameters and/or penalty functions chosen. We have experi-
enced quite the contrary and could not find positive arguments supporting the statement
of EK (cf. Müller–Brown curve calculations [1,2]). EK have criticized our numerical
experiments saying that we did not use the authentic algorithms. An algorithm or nu-
merical method should be reproducible by the information given in a theoretical paper.
We accomplished the reproduction as much as it was made possible by the description
given in the theoretical papers. We are, of course, aware of all the deficiencies and know
that the algorithms used by us cannot be perfectly the same as the original ones (just
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because the EK paper [5] did not give sufficient basis for the correct reproduction). Nev-
ertheless, we have made several variants [4,12,13] following the principles described
in the EK paper [5] (and in papers of other authors [6,8,9,15]) so they may not differ
substantially from the authentic versions and, therefore, they should produce the same
results with minor deviations. We have already offered and now repeat the possibility
to show and give our authentic DDRP algorithm on our homepage asking to exchange it
with the authentic other algorithms. In this way the numeric calculation results could be
reproduced and checked by the authors working on the same field, immediately. Many
misunderstandings could then be cleared up directly and easily.

4. We were ready to admit that we made an error in the derivation of the mathe-
matical proof described at an earlier stage of the preprint form of our paper. This means
that equation (6) in the “Reply” [1] is the right expression. For the detection of this error
we are very much obliged to EK and this fact has been acknowledged in the published
version [3]. However, it must be stressed that this error (madein the proof of the argu-
ments in the preprint of [3]) does affect in no way the arguments themselves and their
consequences to the EK strategy. Therefore EK have not enough base and right to come
to the conclusion that because of the error in the proof our fundamental mathematical
arguments are also faulty.
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